GROUP THEORY (BMath-II, Back paper)

Answer as many questions as you like, for a maximum score of 50. Total time 3 hours.

You may use any result covered in the class without proving it. Use only results and notions covered in the course.

- 1. Let p, q be primes, not necessarily distinct. Classify all groups of order pq. (10)
- 2. Let D_n be the dihedral group of order 2n. Find the center of D_n . (10)
- 3. Let Q denote the group of quaternions. Prove that there is no injective homomorphism $Q \to S_4$. (8)
- 4. Is D_{12} isomorphic to $S_3 \times V_4$? Explain. Here V_4 denotes the Klein four group.(8)
- 5. Let G be a group of order 57. Assume G is not cyclic. How many elements in G have order 3? Explain. (8)
- 6. Determine if the dihedral group D_{109} of order 218 is nilpotent. (10)
- 7. Let G be a group of order 231. Prove that G gas a unique subgroup of order 11 and that this subgroup is contained in Z(G), the center of G. (3+7)
- 8. Let $[n] := \{1, 2, \dots, n\}$. Then $[m] \subset [n]$ for $m \leq n$. Consider the action of S_n on the elements of [n]. For $m \leq n$ let $S(m) := \{\sigma \in S_n | \sigma([m]) = [m]\}$. Prove that S(m) is a subgroup of S_n . Determine this subgroup explicitly. (3+7)
- Let p > 3 be a prime and G be a group of order 4p. Prove that G is not simple.
 (8)
- 10. Let G be a finite non-abelian group having the property that there is a subgoup of order d for every divisor d of |G|. Prove that G is not simple. (10)